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Abstract 

As the first step of any system analysis, modeling is an important task in scientific studies field. The mathematical modeling has a long 

research history. However, nonlinear system modeling has still not been well solved. System identification is the theory and methods 

of establishing mathematical models of systems. In this paper, by using a hybrid technique, a novel identification method for a wide 

class of static nonlinear system with unknown structure is proposed. The basic idea is as follows. Firstly, the proposed method employs 

a system model composed with classical models so as to transform the system structure identification problem into a combinatorial 

optimization problem. Then, the bacterial foraging optimization algorithm is adopted to synchronously implement the identification on 

the system’s structure and parameters. Finally, compared with the existing method in simulation experiments, some examples are given 
to illustrate the validity of the proposed method. 
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1 Introduction 

 

Building models of reality is a central topic in many 

disciplines of engineering and science. Models can be used 

for simulations, analysis of the system’s behavior and for 

a better understanding of the underlying physical 

mechanisms in the system. System identification is the 

theory and methods of establishing mathematical models 

of systems. As one of the key issues of system and control 

science, system identification has been widely applied to 

the design and analysis of control system. Consequently, 

system identification becomes one of the current very 

active subjects, attracting a large number of scientific and 

technical personnel for their theoretical study to examine 

the practical problems in different application possibilities 

[1,2]. 

Most control systems encountered in practice are 

nonlinear to some extent, and, although it may be possible 

to represent systems which are perturbed over a restricted 

operating range by a linear model, in general, nonlinear 

processes can only be adequately characterized by a 

nonlinear model. Since a mathematical description of a 

process is often a prerequisite to analysis and controller 

design, the study of system identification techniques has 

become an established branch of control theory. However, 

whereas system identification techniques for linear 

systems are now well established and have been widely 

applied, the identification of nonlinear systems has not 

been received such attention. This can, of course, be 

attributed to the inherent complexity of nonlinear systems 

and the difficulty of deriving identification algorithms that 

can be applied to a reasonably large class of nonlinear 

systems. At present, the identification of nonlinear system 

                                                           
* Corresponding author’s e-mail: xuxp@xaut.edu.cn 

is the main topics in the current international identification 

fields [3-10]. 

When we have a lot of input–output data from the 

observation of the identified system, and we have no other 

information about the system, how to establish the model 

of the identified system becomes an important issue. Up to 

now, most existing identification methods have generally 

resolved some problem of the specific structure in a way 

[11,12], whilst it can not completely solve system 

identification problem of which the structure and 

parameters are completely unknown. To overcome this 

problem, this note presents a novel identification method 

for nonlinear system with unknown structure only on the 

basis of sample data. 

In recent years, a new and rapidly growing bacterial 

foraging optimization algorithm [13] developed by 

Passion in 2002 has emerged a novel modern search 

algorithm based on the behaviour of Escherichia coli 

bacteria. The bacterial foraging optimization algorithm has 

been tested on many unconstrained global optimization 

functions like Sphere function, Ackley function and 

Griewank function, etc. Now, the bacterial foraging 

optimization algorithm has been successfully applied in 

many areas [14-19]. Of course, it also provides an 

important approach for nonlinear system identification. 

The contribution of this paper is to synchronously 

obtain the model of a static nonlinear system with only one 

record of measured input/output data. Briefly, this paper is 

organized as follows. Section 2 describes identification 

problem formulation. Nonlinear system model are 

obtained based on the bacterial foraging optimization 

algorithm in Section 3. The selection criterion of meta 

model is given in Section 4. Section 5 provides some 
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simulation examples to illustrate the validity of presented 

approach. Finally, we offer some concluding remarks in 

Section 6. 

 

2 Problem description 

 

In this paper, the special idea of the discussed system 

identification is as follows. Selecting a combination of 

sub-models is applied to optimally fit sample data among 

numerous sub-models initially. And then, the parameters 

of the model are obtained via the following bacterial 

foraging optimization algorithm. 

Here, a kind of multi-input single-output static 

nonlinear system is considered below. Let y is an observed 

system output variable, and the input variables x1, x2, …, 

xm are likely to influence the system. So n groups of sample 

data, which obtained from the system, can be described as: 

),,,,,,( 21 mijiiii xxxxy  , (1) 

where, xji denotes the j-th sample datum of the i-th group 

of sample; yi expresses the output value of the i-th group 

of sample; j=1,2,…,m ; i=1,2,…,n. 

Assume that the obtained model from sample data is a 

sample data model; and such model is structured by the 

mutual superposition of all possible sub-models, as well as 

the sub-model is consisted of meta model (i.e., classical 

mathematical model). 

Definition 1. There is a single variable xi, and it takes f(xi) 

as form to influence the output of the system, so the f(xi) is 

called a single variable meta model. 

Assuming the number of single variable meta model is 

N1, from Definition 1, considering each input variable may 

be influence the output of the system via all possible model 

forms. Then, sample data model can be expressed as: 
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where, p0 is a constant term. It can be seen that the above 

mentioned sample data model is structured by the mutual 

combination of N1×m meta models. 

Definition 2. There are two variables xi and xj, and they 

take f(xi, xj)，xi≠xj as form to influence the output of the 

system, moreover, the f(xi, xj) can not be decomposed into 

the form f(xi)+f(xj). So the f(xi, xj) is called a two variables 

meta model. 

Assuming the number of two variables meta model is 

N2, from Definitions 1 and 2, considering each input 

variable may be combine by various possible model forms. 

Therefore, sample data model can be described as: 
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We can see that the sample data model is composed of 

the mutual combination of N1×m+N2×m×(m-1) meta 

models. 

In summary, the general form of the sample data model 

can always be described as: 





1

1

,2,1,0 ),,,,(
N

k

mkkkkk pppxMpy  , (4) 

where, p0 is a constant term. N is the number of sub-model. 

Mk(x, pk,1, pk,2,…, pk,mk) is the k-th sub-model which is 

constituted by the meta model and its independent 

variables, where x can denote either single variable or 

multiple variables, k=1, 2,…, N. mk is the parameter 

number. pk,mj is the j-th parameter, j=1, 2, …, mk. 

Because the sub-model can take many forms, it may be 

either linear or nonlinear. Thereby, the parameters of the 

model are not identical along with the different sub-model. 

Up to now, to our best knowledge, there is not a feasible 

and effective identification method for such problem in 

existing literature. Consequently, studying such problem 

has a certain practical significance. Generally, the purpose 

of system identification is that the system outputs y(t) can 

be best approximated the known system outputs y0(t). 

Thereby, we may minimize the following cost function: 

 
t

tytyJ 2
0 )]()([ . (5) 

Because minimizing Equation (5) is an optimization 

problem, the minimal value of Equation (5) and the 

corresponding minimal value point can be obtained by the 

following bacterial foraging optimization algorithm. 

Accordingly, we simultaneously achieve the identification 

for the structure and parameters of nonlinear system. 

 

3 Constructing system model process 

 

In this paper, the proposed system identification method 

can be divided into the selection of the sub-model (namely, 

structure identification of the system) problem and the 

parameter identification problem of the system model. 

Selecting sub-model from multitudinous sub-models, 

which can be best fit sample data, belongs to a class of 

combinatorial optimization problem, and that the structure 

of a set of selected mathematical model is unknown. 

Thereby, there is no conventional method to identify 

model’s parameters. Moreover, the parameter 

identification problem also belongs to a nonlinear 

optimization problem. Consequently, we employ the 

following bacterial foraging optimization algorithm to 

solve such optimization problem in this paper. The 

optimization in bacterial foraging optimization comprises 

the following processes [13]. 

a) Chemotaxis: This process simulates the movements 

of an Escherichia coli cell through swimming and 

tumbling via flagella. Biologically, an Escherichia coli 

bacterium can move in two different ways. It can swim for 

a period of time in the same direction or it may tumble, and 

alternate between these two modes of operation for the 

entire lifetime. Suppose θi(j, k, l) is i-th bacterium at j-th 

chemotactic, k-th reproductive and l-th elimination 

dispersal step. C(i) is the size of the step taken in the 
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random direction specified by the tumble. Then in 

computational chemotaxis the movement of the bacterium 

may be represented by: 

)()(

)(
)(),,(),,1(

T ii

i
iClkjlkj ii




  , (6) 

where Δ is not unitary, and it is normalized before use it 

)()(/)( T iii ΔΔΔ . 

b) Swarming: Interesting group behaviour has been 

observed for several motile species of bacteria including 

Escherichia coli and salmonella typhimurium, where 

stable spatio-temporal patterns (swarms) are formed in 

semisolid nutrient medium. A group of Escherichia coli 

cells arrange themselves in a traveling ring by moving up 

the nutrient gradient when placed amidst a semisolid 

matrix with a single nutrient chemo-effecter. The cells 

when stimulated by high level of succinate release an 

attractant aspartate, which helps them to aggregate into 

groups and thus move as concentric patterns of swarms of 

high bacterial density. The cell to cell, signaling in 

Escherichia coli swarm may be represented with the 

function. 

c) Reproduction: After chemotactic steps, the fitness 

values for the i-th bacterium in the chemotaxis loop are 

calculated by: 







1

1
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where 
iJhealth  represents the health of the i-th bacterium. 

The smaller the 
iJhealth  is the healthier the bacterium is. To 

simulate the reproduction character in nature and to 

accelerate the swarming speed, all the bacteria are sorted 

according to their health values in an ascending order and 

each of the first bacteria splits into two bacteria. The 

characters including location and step length of the mother 

bacterium are reproduced to the children bacteria. Through 

this selection process the remaining unhealthier bacteria 

are eliminated and discarded. To simplify the algorithm, 

the number of the bacteria keeps constant in the whole 

process. 

d) Elimination–dispersal: For the purpose of 

improving the global search ability, elimination–dispersal 

event is defined after reproductive steps. The bacteria are 

eliminated and dispersed to random positions in the 

optimization domain according to the elimination–

dispersal probability. This elimination–dispersal event 

helps the bacterium avoid being trapped into local optima.  

The pseudo code of the bacterial foraging optimization 

algorithm can be written as follows. 

Step 1. Initialize parameters: n, N, NC, NS, Nre, Ned, Ped, 

C(i) (i=1, 2, … , N). Where n: dimension of the search 

space (namely, number of parameters to be optimized), N: 

the number of bacteria in the population, NC: chemotactic 

steps, NS: swim length, Nre: the number of reproduction 

steps, Ned: the number of elimination–dispersal events, Ped: 

elimination–dispersal with probability, C(i): the size of the 

step taken in the random direction specified by tumble. 

Step 2. Elimination–dispersal loop: l = l + 1 

Step 3. Reproduction loop: k = k + 1 

Step 4. Chemotaxis loop: j = j +1 

Step 4.1. For i=1, 2, … , N, take a chemotactic step for 

bacterium i as follows. 

Step 4.2. Compute fitness function, J(i, j, k, l) (in this 

paper, Equation (5) is taken as the fitness function J(i, j, k, 

l)). Let, J(i, j, k, l) = J(i, j, k, l) + Jcc(θi(j, k, l), P(j, k, l)), 

where 

,))]((exp[

))]((exp[
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where Jcc(θ, P(j, k, l)) is the objective function value to be 

added to the actual objective function to present a time 

varying objective function. θ=[θ1, θ2,…, θn]T is a point in 

the n-dimensional search domain. P(j, k, l)={ θi(j, k, l) | 

i=1, 2, …, N} is the set of the bacterial swarm foraging 

position. dattractant is the depth of the attractant released by 

the cell. wattractant is a measure of the width of the attractant 

signal. hrepellant is the height of the repellant effect 

(magnitude) and wrepellant is a measure of the width of the 

repellant. 

Step 4.3. Let Jlast = J(i, j, k, l) to save this value since a 

better cost via a run. 

Step 4.4. Tumble: generate a random vector Δ(i)Rn 

with Δm(i), m=1, 2, …, n, a random number on [-1, 1]. 

     Step 4.5. Move: let )(),,(),,1( iClkjlkj  ii
θθ  

))()()(( T iii ΔΔΔ , this results in a step of size C(i) in the 

direction of the tumble for bacterium i. 

Step 4.6. Compute J(i, j, k, l) and let J(i, j, k, l) = J(i, j, 

k, l) + Jcc(θi(j, k, l), P(j, k, l)). 

Step 4.7. Swim 

{1} Let m = 0 (counter for swim length). 

{2} while m < NS (if have not climbed down too long). 

• Let m = m +1 

• If J(i, j + 1, k, l) < Jlast , let Jlast = J(i, j + 1, k, l) and let 

),,1( lkj i
θ ))()()(()(),,( T iiiiClkj ΔΔΔθ

i   and use this 

θi(j + 1, k, l) to compute the new J(i, j + 1, k, l) as in Substep 

6. 

• Else, let m = NS. This is the end of the while statement. 

Step 4.8. Go to next bacterium (i+1) if i ≠ N (i.e., go to 

Substep 2 to process the next bacterium). 

Step 5. If J < NC, go to Step 4. In this case, continue 

chemotaxis, since the life of the bacteria is not over. 

Step 6. Reproduction 
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• For the given k and l, and for each i=1, 2, … , N, let 







1

1health ),,,(
CN

j

i lkjiJJ  be the health of the bacterium i. Sort 

bacteria and chemotactic parameters C(i) in order of 

ascending cost Jhealth (higher cost means lower health). 

• The Sr bacteria with the highest Jhealth values die and the 

other Sr bacteria with the best values split. 

Step 7. If k < Nre, go to Step 3. In this case, we have not 

reached the number of specified reproduction steps, so we 

start the next generation in the chemotactic loop. 

Step 8. Elimination–dispersal: for i=1, 2, … , N, with 

probability Ped, eliminate and disperse each bacterium, and 

this keeps the number of bacteria in the population 

constant. To do this, if a bacterium is eliminated, simply 

disperse one to a random location on the optimization 

domain. 

Step 9. If l < Ned, then go to Step 2; otherwise end, 

Then, optimal value of the objective function J and the 

corresponding optimal point are obtained. 

 

4 Selecting meta model 

 

Sample data model is composed by the various sub-

models, and each sub-model is constituted by the 

combination of meta models and their independent 

variables. So the selection of the meta model plays a 

decisive role in the proposed system identification method. 

Moreover, the selection of the meta model should abide by 

the following principles: 

1) Common property: It includes usually emergent 

model in the correlation research field; 

2) Typical property: Different models should possess 

different character; 

3) Covering property: It contains as far as possible 

relation or law by the combination of the meta model. 

In the simulation study of this paper, we select the 

following typical meta model. 

i) The linear model: y=bx; 

ii) The exponential function model: y=aebx; 

iii) The power function model: y=axb; 

iv) The logarithmic function model: y=alnx; 

v) The hyperbolic function model: y=a/(b+x); 

vi) The periodic function model: y=acos(bx+c). 

 

5 Simulation examples 

 

In order to illustrate the effectiveness of the proposed 

identification method, the following examples show the 

estimation process for nonlinear systems.  

BFOA represents the bacterial foraging optimization 

algorithm; GA stands for the genetic algorithm. 

Example 1 Consider the following system: 

x
xxy




2.0

5.0
)16.0cos(6.15.0 . (9) 

According to Equation (9), 50 groups of sample data 

are generated, but assuming that the structure of the 

nonlinear system model is not given in advance. Thereby, 

we select all meta models provided in this paper to 

implement the identification of the system based on the 

proposed identification approach. In simulation, the 

parameters of the above-mentioned BFOA are set: n=6, 

N=10, NC =100, NS =4, Nre =4, Ned =2, Ped =0.25, and 

C(i)=0.025. 

After multiple simulations are carried out using the 

BFOA, and the following results are obtained. 

x
x

xy






2003.0

5017.0
)9896.05998.0cos(5896.1

4988.00023.0

       . (10) 

 
FIGURE 1 Identification results of Example 1 

 
FIGURE 2 Square curves of identification error of Example 1 

In order to show the validity of the proposed method, 

we further adopt the GA [4] to identify the system, and the 

following results are gotten. 

x
x

xy






1830.0

4895.0
)9645.06201.0cos(6035.1

4906.00037.0

. (11) 

Moreover, the maximal deviations of using the BFOA 

and GA identification are 0.0807 and 1.8189, respectively. 

The mean square errors are 0.0219 and 0.4736, 

respectively. And their fitting results are shown in Figure 

1, while the curves of their identification error squared are 

depicted in Figure 2, respectively. 
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Example 2 In accordance with Equation (9), 50 sets of 

sample data are also produced. Moreover, the random 

disturbances are generated on the interval [-10%, +10%] 

and added to the sample data according to 10%. In this 

case, we still assume that the structure of the system model 

is unknown in advance, and select all meta model provided 

in this paper to implement identification for the system. In 

simulation, the main parameters of the BFOA are same as 

those of Example 1. After multiple simulations using the 

BFOA and the GA are still carried out, we choose the 

following better identification results, respectively. 

 
FIGURE 3 Identification results of Example 2 

0.0095 0.4976

0.5110
1.5869cos(0.5975 0.9795) ,

0.2044

y x

x
x

  

 


                (12) 

          

0.0120 0.5131

0.5129
1.5804cos(0.5586 0.8832) .

0.2075

y x

x
x

  

 


 (13) 

The maximal deviations of using the BFOA and GA 

identification are 0.2976 and 3.0772, respectively. 

Moreover, the mean square errors are 0.0737 and 0.8624, 

respectively. And the fitting results and identification 

errors are shown in Figures 3 and 4, respectively. 

From the simulation results of the above Examples 1 

and 2, when the disturbances appear, the structure and 

parameters for the nonlinear system can still better 

identified using the BFOA identification. Thereby, we can 

see that the proposed identification method is effective and 

reasonable. That is to say, the presented identification 

approach can better meet the engineering practical 

requirement. 

 
FIGURE 4 Square curves of identification error of Example 2 

 

6 Conclusion 

 

Aim at a class of nonlinear system with unknown structure, 

a novel identification method of the static nonlinear system 

is presented. The idea is to employ a system model 

composed with classical models so as to change the system 

structure identification problem into a combinational 

problem initially. And then, the BFOA is applied to carry 

out the identification of the model parameters. Thus, the 

structure and parameters of nonlinear system are 

simultaneously estimated on the basis of sample data. 

Finally, simulation examples validate that the proposed 

method can obtain higher accuracy and robustness. 
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